
90 Chapter 2 / Abstract Data Types and C++ Classes

PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Specify, design, and implement a class that
can be used in a program that simulates a
combination lock. The lock has a circular

knob, with the numbers 0 through 39 marked on the
edge, and it has a three-number combination, which
we’ll call x, y, z. To open the lock, you must turn the
knob clockwise at least one entire revolution, stop-
ping with x at the top; then turn the knob counter-
clockwise, stopping the second time that y appears at
the top; finally turn the knob clockwise again, stop-
ping the next time that z appears at the top. At this
point, you may open the lock.

Your lock class should have a constructor that
initializes the three-number combination (use 0, 0, 0
for default arguments). Also provide member func-
tions:

(a) to alter the lock’s combination to a new three-
number combination

(b) to turn the knob in a given direction until a
specified number appears at the top

(c) to close the lock
(d) to attempt to open the lock
(e) to inquire about the status of the lock (open or

shut)
(f) to tell you what number is currently at the top

Specify, design, and implement a class
called statistician. After a statistician is
initialized, it can be given a sequence of

double numbers. Each number in the sequence is
given to the statistician by activating a member
function called next_number. For example, we can
declare a statistician called s, and then give it the se-
quence of numbers 1.1, –2.4, 0.8 as shown here:

statistician s;
s.next_number(1.1);
s.next_number(-2.4);
s.next_number(0.8);

After a sequence has been given to a statistician,
there are various member functions to obtain infor-
mation about the sequence. Include member func-

1

2

tions that will provide the length of the sequence, the
last number of the sequence, the sum of all the num-
bers in the sequence, the arithmetic mean of the
numbers (i.e., the sum of the numbers divided by
the length of the sequence), the smallest number in
the sequence, and the largest number in the se-
quence. Notice that the length and sum functions can
be called at any time, even if there are no numbers in
the sequence. In this case of an “empty” sequence,
both length and sum will be zero. But the other
member functions all have a precondition requiring
that the sequence is non-empty.

You should also provide a member function that
erases the sequence (so that the statistician can start
afresh with a new sequence).

Notes: Do not try to store the entire sequence
(because you don’t know how long this sequence
will be). Instead, just store the necessary
information about the sequence: What is the
sequence length? What is the sum of the numbers in
the sequence? What are the last, smallest, and largest
numbers? Each of these pieces of information can be
stored in a private member variable that is updated
whenever next_number is activated.

Overload the + operator to allow you to
add two statisticians from the previous
project. If s1 and s2 are two statisticians,

then the result of s1 + s2 should be a new statisti-
cian that behaves as if it had all of the numbers of s1
followed by all of the numbers of s2.

Specify, design, and implement a class for a
card in a deck of playing cards. The object
should contain methods for setting and

retrieving the suit and rank of a card.

Specify, design, and implement a class that
can be used to keep track of the position of a
point in three-dimensional space. For example,

consider the point drawn at the top of the next col-
umn. The point shown there has three coordinates:

3

4

5

