
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II

Performance questions
4

• How efficient is a particular algorithm?
• CPU time usage (Running time complexity)
• Memory usage
• Disk usage
• Network usage

• Why does this matter?

• Computers are getting faster, so is this really important?
• Data sets are getting larger – does this impact running times?

How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

• Pros? Cons?

clock_t t;
t = clock();

//Code being timed

t = clock() - t;

Which implementation is significantly faster?
function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

A. Recursive algorithm

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

B. Iterative algorithm

C. Both are almost equally fast

A better question: How does the running time scale as a function of
input size

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

The “right” question is: How does the running time scale?
E.g. How long does it take to compute F(200)?
….let’s say on….

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation
The Earth simulator needs 295 seconds for F200.

Time in seconds Interpretation
 210 17 minutes

 220 12 days

 230 32 years

 240 cave paintings

 270 The big bang!

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

Let’s try calculating F200
using the iterative
algorithm on my laptop…..

Goals for measuring time efficiency
• Focus on the impact of the algorithm: Simplify the analysis of
running time by ignoring “details” which may be an artifact of the
underlying implementation:
• E.g., 1000001 ≈ 1000000

• Similarly, 3n2 ≈ n2

• Focus on asymptotic behavior: How does the running time of an
algorithm increases with the size of the input in the limit (for large
input sizes)

Counting steps (instead of absolute time)
• Every computer can do some primitive operations in constant time:

• Data movement (assignment)

• Control statements (branch, function call, return)

• Arithmetic and logical operations

• By inspecting the pseudo-code, we can count the number of primitive
operations executed by an algorithm

Running Time Complexity

/* N is the length of the array*/
int sumArray(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i++)
 result+=arr[i];
 return result;
}

Start by counting the primitive operations

Let’s look at what happens as we increase N

/* N is the length of the array*/
int sumArray(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i++)
 result+=arr[i];
 return result;
}

N Steps = 3+ 5*N
1 8
10 53
1000 5003
100000 500003
10000000 50000003

• Does the constant 3 matter as N gets large?
• Does the constant 5 matter as N gets large?
Maybe, but its something that is easily affected by the implementation, so we will ignore it
• Which of these may be affected by implementation details? Both

Asymptotic analysis
Recall our goals:
• Focus on the impact of the algorithm

• Focus on asymptotic behavior
Here is how for the sumArray function:

Exact step count : 3+ 5*N
Drop the constant additive term : 5*N
Drop the constant multiplicative term : N
Running time grows linearly with the input size
Express the count using O-notation
Time complexity = O(N)
(make sure you know what = means in this case)

Which of the following is the step count for this algorithm as a
function of input size (pick the closest)

/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i=i+2)
 result+=arr[i];
 return result;
}

A. 3+ 5*N
B. 3+ 5*N^2
C. 3+5*N/2

D. 2* log(N)

E. Depends on the
values in the array

Orders of growth
• We are interested in how

algorithms scale with input size

• Big-Oh notation allows us to
express that by ignoring the
details

• 20N hours v. N2 microseconds:
• which has a higher order of

growth?

• Which one is better?

Writing Big O
• Simple Rule: Ignore lower order terms and constant factors:

• 50n log n

• 7n – 3

• 8n2 log n + 5 n2 + n + 1000

• Note: even though 50 n log n is O(n5), it is expected that such
approximation be as tight as possible (tight upper bound).

Given the step counts for different algorithms, express the
running time complexity using Big Oh

1. 10000000
2. 3*N
3. 6*N-2
4. 15*N + 44
5. N2
6. N2-6N+9
7. 3N2+4*log(N)+1000*N

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Definition of Big O
• Definition: A theoretical measure of the execution of an algorithm, usually the

time or memory needed, given the problem size n. Informally, saying some
equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). The
notation is read, "f of n is big oh of g of n".

• Formal Definition: f(n) = O(g(n)) means there are positive constants c and k,
such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for
the function f and must not depend on n.

Running time

Problem Size (n)

Big-O is an
asymptotic
upper bound
on the rate of
growth

Operations on sorted arrays

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

• Min :
• Max:
• Median:
• Successor (next largest element):
• Predecessor:
• Search:
• Insert :
• Delete:

What is the Big O of the iterative implementation?

A. O(1)
B. O(N)
C. O(N2)
D. O(2N)
E. None of the above

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

What is the Big O of the recursive implementation?

T(n): Time taken to calculate F(n)
Assume unit time
T(n) is the step count for input n

T(1) = 2
T(2) = 2

For n > 2:
T(n) = 2 + 2 (1 for each subtraction)+ 1(addition) + T(n-1) + T(n-2)
 = T(n-1) + T(n-2) + 5

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

What is the Big O of the recursive implementation?
For n > 2:
T(n) = T(n-1) + T(n-2) + 5
Approximation: T(n-1) = T(n-2), actually T(n-1)>T(n-2).
So the following is an upper bound for T(n)
Upper bound for T(n) =
= 2*T(n-1) + C
= 2* (2* T(n-2) + C) + C
= 4* T(n-2) + 3C
= 8* T(n-3) + 7C
= 2k*T(n-k) + (2k- 1)*C
For what value of k is n-k = 1, k = n-1. Substitute above
= 2n-1*T(1) + (2n-1- 1)*C , T(1) = 2

What is the Big O of the recursive implementation
• We calculated the upper bound on the number of steps as a function of input

size as:

 2n+1*T(1) + (2n+1- 1)*C , where : T(1) = 2

 = O(2N)

Orders of growth
• How does exponential growth

compare with linear?

Big Omega, Big Theta
• Formal Definition: f(n) = Ω (g(n)) means there are positive constants c and k,

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ k. The values of c and k must be fixed for
the function f and must not depend on n.

• Formal Definition: f(n) = Θ (g(n)) means there are positive constants c1, c2,
and k, such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ k. The values of c1, c2, and k
must be fixed for the function f and must not depend on n. 

Running time

Problem Size (n)

Big-Omega is a lower
bound on the rate of
growth

Next time
• Binary Search Trees

Ack: Prof. Sanjoy Das Gupta for his excellent motivation on why this lecture matters, taking the Fibonacci examples

