
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II

 



Performance questions
4

• How efficient is a particular algorithm? 
• CPU time usage   (Running time complexity) 
• Memory usage 
• Disk usage 
• Network usage 

  
• Why does this matter? 

• Computers are getting faster, so is this really important? 
• Data sets are getting larger – does this impact running times?



How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time  

• Pros? Cons?

clock_t t; 
t = clock(); 

//Code being timed  

t = clock() - t;



Which implementation is significantly faster?
function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

A. Recursive algorithm

function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}

B. Iterative algorithm

C. Both are almost equally fast



A better question: How does the running time scale as a function of 
input size

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}

The “right” question is: How does the running time scale? 
E.g. How long does it take to compute F(200)? 
….let’s say on….



NEC Earth Simulator

Can perform up to 40 trillion operations per second.



The running time of the recursive implementation
The Earth simulator needs 295 seconds for F200. 

Time in seconds  Interpretation 
 210      17 minutes 

 220    12 days 

 230    32 years 

 240    cave paintings 

  270    The big bang! 

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

Let’s try calculating F200 
using the iterative 
algorithm on my laptop…..



Goals for measuring time efficiency
• Focus on the impact of the algorithm: Simplify the analysis of 
running time by ignoring “details” which may be an artifact of the 
underlying implementation: 
• E.g., 1000001 ≈ 1000000 

• Similarly, 3n2 ≈ n2 

• Focus on asymptotic behavior: How does the running time of an 
algorithm increases with the size of the input in the limit (for large 
input sizes)



Counting steps (instead of absolute time)
• Every computer can do some primitive operations in constant time: 

• Data movement (assignment) 

• Control statements (branch, function call, return) 

• Arithmetic and logical operations 

• By inspecting the pseudo-code, we can count the number of primitive 
operations executed by an algorithm



Running Time Complexity

/* N is the length of the array*/ 
int sumArray(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i++)     
              result+=arr[i];   
       return result; 
}

Start by counting the primitive operations



Let’s look at what happens as we increase N

/* N is the length of the array*/ 
int sumArray(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i++)     
              result+=arr[i];   
       return result; 
}

N Steps = 3+ 5*N
1 8
10 53
1000 5003
100000 500003
10000000 50000003

• Does the constant 3 matter as N gets large?  
• Does the constant 5 matter as N gets large?  
Maybe, but its something that is easily affected by the implementation, so we will ignore it  
• Which of these may be affected by implementation details? Both 



Asymptotic analysis
Recall our goals: 
• Focus on the impact of the algorithm 

• Focus on asymptotic behavior 
Here is how for the sumArray function:

Exact step count                                 : 3+ 5*N 
Drop the constant additive term         : 5*N 
Drop the constant multiplicative term : N 
Running time grows linearly with the input size 
Express the count using O-notation 
Time complexity =  O(N)     
(make sure you know what = means in this case)



Which of the following is the step count for this algorithm as a 
function of input size (pick the closest)

/* N is the length of the array*/ 
int sumArray2(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i=i+2)     
              result+=arr[i];   
       return result; 
}

A. 3+ 5*N  
B. 3+ 5*N^2 
C. 3+5*N/2 

D. 2* log(N) 

E. Depends on the 
values in the array



Orders of growth
• We are interested in how 

algorithms scale with input size 

• Big-Oh notation allows us to 
express that by ignoring the 
details 

• 20N hours v. N2 microseconds:  
• which has a higher order of 

growth? 

• Which one is better?



Writing Big O
• Simple Rule: Ignore lower order terms and constant factors: 

• 50n log n 

• 7n – 3 

• 8n2 log n + 5 n2 + n + 1000 

• Note: even though 50 n log n is O(n5), it is expected that such 
approximation be as tight as possible (tight upper bound).



Given the step counts for different algorithms, express the 
running time complexity using Big Oh

1. 10000000  
2. 3*N      
3. 6*N-2      
4. 15*N + 44 
5. N2     
6. N2-6N+9   
7. 3N2+4*log(N)+1000*N

For polynomials, use only leading term, ignore coefficients: linear, quadratic



Definition of Big O
• Definition: A theoretical measure of the execution of an algorithm, usually the 

time or memory needed, given the problem size n. Informally, saying some 
equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). The 
notation is read, "f of n is big oh of g of n". 

• Formal Definition: f(n) = O(g(n)) means there are positive constants c and k, 
such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for 
the function f and must not depend on n.

Running time

Problem Size (n)

Big-O is an 
asymptotic 
upper bound 
on the rate of 
growth



Operations on sorted arrays

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

• Min :  
• Max:  
• Median:  
• Successor ( next largest element):  
• Predecessor:  
• Search: 
• Insert :  
• Delete:







What is the Big O of the iterative implementation?

A. O(1) 
B. O(N) 
C. O(N2) 
D. O(2N) 
E. None of the above

function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}



What is the Big O of the recursive implementation?

T(n): Time taken to calculate F(n) 
Assume unit time 
T(n) is the step count for input n 

T(1) = 2 
T(2) = 2 

For n > 2: 
T(n) = 2 + 2 (1 for each subtraction)+ 1(addition) + T(n-1) + T(n-2) 
        =  T(n-1) + T(n-2) + 5

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}



What is the Big O of the recursive implementation?
For n > 2: 
T(n) = T(n-1) + T(n-2) + 5 
Approximation:  T(n-1) =  T(n-2), actually T(n-1)>T(n-2). 
So the following is an upper bound for T(n) 
Upper bound for T(n) =  
= 2*T(n-1) + C 
= 2* (2* T(n-2) + C) + C  
= 4* T(n-2) + 3C 
= 8* T(n-3) + 7C 
= 2k*T(n-k) + (2k- 1)*C  
For what value of k is n-k = 1, k = n-1. Substitute above 
=  2n-1*T(1) + (2n-1- 1)*C ,   T(1) = 2



What is the Big O of the recursive implementation
• We calculated the upper bound on the number of steps as a function of input 

size as: 

           2n+1*T(1) + (2n+1- 1)*C , where : T(1) = 2 

  = O(2N)



Orders of growth
• How does exponential growth 

compare with linear?



Big Omega, Big Theta
• Formal Definition: f(n) = Ω (g(n)) means there are positive constants c and k, 

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ k. The values of c and k must be fixed for 
the function f and must not depend on n. 

• Formal Definition: f(n) = Θ (g(n)) means there are positive constants c1, c2, 
and k, such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ k. The values of c1, c2, and k 
must be fixed for the function f and must not depend on n. 

Running time

Problem Size (n)

Big-Omega is a lower 
bound on the rate of 
growth



Next time
• Binary Search Trees

Ack: Prof. Sanjoy Das Gupta for his excellent motivation on why this lecture matters, taking the Fibonacci examples 


