RUNNING TIME ANALYSIS

Problem Solving with Computers-I| C++
: GitHub

50
o S m

I
Performance questions

- How efficient is a particular algorithm?
- CPU time usage (Running time complexity)
- Memory usage
- Disk usage
- Network usage

- Why does this matter?
- Computers are getting faster, so is this really important?
- Data sets are getting larger — does this impact running times?

How can we measure time efficiency of algorithms?

* One way is to measure the absolute running time clock_t t;

- Pros? Cons?

Al L g Snsight b0 //Code being timed

Q %xv’“?\ﬂx\'\"j ot @gn T = clock() - t;

mn \[o\ﬁes OQTQ\\&QMS 12 0‘_"4‘1(\\9\”{_ Si20
#+ havd wace

& .SFC e IC\l\j“Dge‘rCDNP")ef
§NY\CMM\Q'\‘M

Which implementation is significantly faster?

function F(n) {

function F(n) { Create an array fib[l..n]

if(n == 1) return 1

fib[1l] = 1
if(n == 2) return 1 fib[2] =1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = fib[i-1] + fib[i-2]
return fib[n]
}
| sce
A. Recursive algorithm B. lterative algorithm \A'AU] in Fe Jes

C. Both are almost equally fast

A better question: How does the running time scale as a function of
input size

function F(n) {

function F(n) { Create an array £fib[l..n]

if(n == 1) return 1 fib[1l] = 1
if(n == 2) return 1 fib[2] =1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = fib[i-1] + fib[i-2]

return fib[n]

}

The “right” question is: How does the running time scale?
E.g. How long does it take to compute F(200)?
....let's say on....

NEC Earth Simulator

The Earth Simulator éenter

Can perform up to 40 trillion operations per second.

E,,MH46Z6U6AZSWWH
The running time of the recursive implementation

The Earth simulator needs 295 seconds for F,,.

Time in seconds Interpretation function F(n) {
210 17 minutes if(n == 1) return 1
20 if(n == 2) return 1
2 12days return F(n-1) + F(n-2)
230 32 years }
240 cave paintings

Let’s try calculating F,q,

. using the iterative
270 The big bang! algorithm on my laptop.....

Goals for measuring time efficiency

- Focus on the impact of the algorithm: Simplify the analysis of
running time by ignoring “details” which may be an artifact of the
underlying implementation:

- E.g., 1000001 = 1000000
- Similarly, 3n2= n2

- Focus on asymptotic behavior: How does the running time of an
algorithm increases with the size of the input in the limit (for large
input sizes)

Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
- Data movement (assignment)
- Control statements (branch, function call, return)
- Arithmetic and logical operations

- By inspecting the pseudo-code, we can count the number of primitive
operations executed by an algorithm

Running Time Complexity
Start by counting the primitive operations

/* N is the length of the array*/
int sumArray(int arr[], int N)

{ <
Q int result=0; 1 Pﬁm‘hs\{:_?g ¥
5}‘(‘- for(J.nt i=0;\i < N > 2 Steps
resu1t+—arr[1],—+ QS}QVS
return result; \ekep

}
Counp = 1T\ T x5 F*FN = 35N

Let’s look at what happens as we increase N

_ teps = 3+ 5*N /* N is the length of the array:

int sumArray(int arr[], int N)

10 53 { int result=0;

1000 5003 for(int i=0; i < N; i++)

100000 500003 result+=arr[i];

10000000 50000003 return result; i
} (ef?

. \QQAEV‘
aereedor e
- Does the constant 3 matter as N gets large? ckca l\,)\1 'Y
- Does the constant 5 matter as N gets large? - ("\’H’C‘
Maybe, but its something that is easily affected by the implementation, so we will ignore it

- Which of these may be affected by implementation details? Both

e
Asymptotic analysis

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior

Here is how for the sumArray function:

Exact step count : 3+ 5*N

Drop the constant additive term - 5*N

Drop the constant multiplicative term : N

Running time grows linearly with the input size
Express the count using O-notation

Time complexity = O(N)

(make sure you know what = means in this case)

Which of the following is the step count for this algorithm as a
function of input size (pick the closest)

A 3+ 5*N /* N is the length of the array*/
int sumArray2(int arr[], int N)
B. 3+ 5*NA2 {
3+5*N/2 int result=0;
D. 2% log(N) for(int i=0; i < N; i=i+2)
£. Depends on the result+=arr([i];
values in the array return result;

nl2r nlog.n n

100 .
Orders of growth 1 8%,
90| i1 i
- We are interested in how 80 ! || /,/‘/
algorithms scale with input size i ,' /‘
70 | i P
'l 1
- Big-Oh notation allows us to ,gﬁ*)') 60 :,' /./'/
express that by ignoring the & I 7
details 01l 7
0(1OK o(loéfﬂ 4 0(5;\)(00\34 0 (“._iﬁf‘}to ¢ i
* 20N hours v. N2 microseconds: 30 il
* which has a higher order of S '
growth? nN* 20 7
- Which one is better? 2.0 10 (A= Nn_
"""" q (o agan

(_.fw larope N o ¥ L i
0 10 20 30 40 50 69 70 80 90 100
S

Writing Big O
*Simple Rule: Ignore lower order terms and constant factors:
}S@’nlogn = OCnQOgT\B

'7n-3 OCn>
8n2log n +5@+n + 1000

OCm* loy ™)
- Note: even though 50 n log n is O(n3), it is expected that such
approximation be as tight as possible (tight upper bound).

Given the step counts for different algorithms, express the
running time complexity using Big Oh

10000000 O

1

2. 3*%N OR)

3. 6*N-2 OlR)

4 15%N + 44 o ()

5. N2 O ()

6. N2-6N+9 OLN>)

7 3N24+4%1log (N)+1000%N O (NY)

For polynomials, use only leading term, ignore coefficients: linear, quadratic

e
Definition of Big O

- Definition: A theoretical measure of the execution of an algorithm, usually the
time or memory needed, given the problem size n. Informally, saying some
equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). The
notation is read, "f of n is big oh of g of n".

- Formal Definition: f(n) = O(g(n)) means there are positive constants ¢ and Kk,
such that 0 < f(n) < cg(n) for all n = k. The values of ¢c and k must be fixed for

the function f and must not depend on n.

Big-O is an
o £ (n) asymptotic
Running time upper bound
on the rate of
growth

cg(n)

~— kK Problem Size (n)

e
Operations on sorted arrays

Min: OO Nt Numbec 2% Ademenlr TN IR
“Max: O QD
- Median: C)C\)

- Successor (next largest element): O (i 3

- Predecessor: O C \
- Search: py e “‘??(Md’“’ CLincon Coonch) O (R0

- Insert o .)
.DeletebaoLL) Q"’W"l sumdn OClog M

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14

| Pleace ¢ b P code Wfittun T \.
’ Clogs dre dAa implemantalion @ @'matygﬁh‘d»hl

E‘mom., Sem‘c)ﬂ Qw\(\'u\d Vime A(\a\\/m‘s
boal \Jir\ac\, Seatch (int ard L7, ok e \ement, bR
nY beinz O:
’ ront e
int Qz 2 N~ }’% Conctont T
ar mid

while. € beg’m (= end) S
Y}/LEB - (ené—f—bejm) (2
g (oge fmid] z = element)

cefurn Hue;
(ovtad —> | 1 €« (e Conid T element:)3
rine begin = mid €\ ;
{ else §
end ¢ mio-L
q

7
Ferurn S—u\sc

fithwy {,SSCI\Ha\\j)Dcrfef ms
‘miBve Steps be{«m‘c the
the number Cf gkeps

Obgervaton = The alop

o Cosrant Pumber Of ?r
While \ooy- This m™eans
dow't &e\:ua s A smd:b»{m e N
So , the Time complecihy B Hha cade Defore
e OCD

Yo while
The complexity 2f eacls ihenation of the 100
s () os el

overall com?lodﬁ:j we J‘w

To g e
Need %D §~jure our how Many TS
e Lwale loop il @xecute in¥ae wevst Cogel

‘REj dbsecva bon - Tr\ ‘CUC‘H | Fesaton Q-

Ly Search we Yeduce our seafch SPAct

j.e- Jhe Size O% e avrcu.) be_ms Searcff\eé\zj
haLE - Relow is a4 ?a\'kff\ ok Yow e
Pm\o\cw\ e (educes with-evety Hleratan O}

Yoo while loop
1 tecodion Size oy al‘foj kcwg Sea cche D
\ ~
2 N2
) NJo"
% RS
A’%(‘C“ k fohots e a‘ﬂ'oﬁ'\‘e’“"’\ hout
e duced Ahe Sike d%«l-(’m ?ro\a\em b M/z"-
IOhen 00 We¢ ghop 2
When N &) (Scuckins an oty ok
9 ¥ gire V)
=) 94N
OR & & log()
ynost LO{'),'_Q

So , Pase vl e or
tietohene - Codh 4 lerotiom erfsrns @onsh
numvoer ()'.b O?quh‘d\n . S the CDMPI&‘H\,I_(

e OCHe Ihder) = o)
onfe. Some (ondians | iy fipd t2.ahy o Conctent no-@ekps <4 tevabion

What is the Big O of the iterative implementation”?

function F(n) {

A O(1) Create an array fib[l..n]
O(N) £ib[1] = 1

C. O(N2) fib[2] =1

D. O(2N) for i = 3 to n:

£. None of the above £ib[i] = £ib[i-1] + £ib[i-2]

return fib[n]

What is the Big O of the recursive implementation?

T(n): Time taken to calculate F(n) function F(n) {

Assume unit time if(n == 1) return 1
if(n == 2) return 1

return F(n-1) + F(n-2)

}

T(n) is the step count for input n

T(1)=2

T(2)=2 This proaf te beypnd T
Henoeuo,
() .
Forn > 2: SLBTZ Q*I'M Ns;r} vanl) ?)v pyueY
T(n) =2 + 2 (1 for each subtraction)+ 1(addition) + T(n-1) + T(n-2) Ap QPP“’“J‘
= T(n-1) + T(n-2) + 5 tn doxs

e P(_(N\E)

What is the Big O of the recursive implementation?

Forn > 2:

T(n)=T(n-1) + T(n-2) + 5

Approximation: T(n-1) = T(n-2), actually T(n-1)>T(n-2).
So the following is an upper bound for T(n)

Upper bound for T(n) =

=2*T(n-1)+C

=2*(2*T(n-2)+C)+C

=4*T(n-2) + 3C

=8*T(n-3) +7C

= 2KT(n-k) + (2k- 1)*C

For what value of k is n-k = 1, k = n-1. Substitute above
= 20TT(1) + (201-1)*C, T(1)=2

What is the Big O of the recursive implementation

* We calculated the upper bound on the number of steps as a function of input
Size as:

20+1°T(1) + (27+1- 1)*C , where : T(1) = 2

= O(2N)

nl2"n? nlogan n
— 7

100
Orders of growth B 1
i /
90 | i1 7]
- How does exponential growth || il
compare with linear? l'
|
|
|
[
l
Nn
log2n

00 10 20 30 40 50 60 70 80 90 100
n

E,,MH46Z6U6AZSWWH
Big Omega, Big Theta

- Formal Definition: f(n) = Q (g(n)) means there are positive constants ¢ and k,
such that 0 < cg(n) < f(n) for all n = k. The values of ¢ and k must be fixed for

the function f and must not depend on n.

- Formal Definition: f(n) = © (g(n)) means there are positive constants c,, c,,
and k, such that 0 < c,g(n) = f(n) = c,g(n) for all n 2 k. The values of c,, ¢,, and k
must be fixed for the function f and must not depend on n.

Big-Omega is a lower
bound on the rate of
growth

Running time

Problem Size (n)

Next time

* Binary Search Trees

Ack: Prof. Sanjoy Das Gupta for his excellent motivation on why this lecture matters, taking the Fibonacci examples

