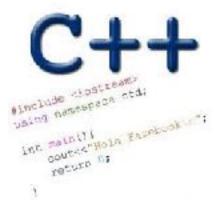
# **RUNNING TIME ANALYSIS**

**Problem Solving with Computers-II** 





# How is PA02 going?

- A. Done
- B. On track to finish
- **C.** Having trouble designing my classes
- **D.** Stuck and struggling
- E. Haven't started

#### Announcements

- PA02 check point deadline this Thurs: 05/03 at midnight
- Submit your code to GitHub and request your mentor to go over your design

#### **Performance questions**

• How efficient is a particular algorithm?

CPU time usage (Running time complexity)

- Memory usage
- Disk usage
- Network usage
- Why does this matter?
  - Computers are getting faster, so is this really important?
  - Data sets are getting larger does this impact running times?

#### How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

clock\_t t; t = clock();

Pros? Cons?

//Code under test

$$t = clock() - t;$$

#### Which implementation is significantly faster?

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
        fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

A. *Recursive* algorithm B. *Iterative* algorithm

C. Both are almost equally fast

# A better question: How does the running time scale as a function of input size

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
  Create an array fib[1..n]
  fib[1] = 1
  fib[2] = 1
  for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
  return fib[n]
}
```

The "right" question is: How does the running time scale? E.g. How long does it take to compute F(200)? ....let's say on....

#### **NEC Earth Simulator**



#### Can perform up to 40 trillion operations per second.

The running time of the recursive implementation

The Earth simulator needs  $2^{95}$  seconds for  $F_{200}$ .

| Time in seconds         210         220         230         240 | Interpretation<br>17 minutes<br>12 days<br>32 years<br>cave paintings | <pre>function F(n) {     if(n == 1) return 1     if(n == 2) return 1     return F(n-1) + F(n-2)   }   Let's try calculating F<sub>200</sub></pre> |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 270                                                             | The big bang!                                                         | using the iterative algorithm on my laptop                                                                                                        |

#### Goals for measuring time efficiency

- Focus on the impact of the algorithm: Simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:
  - E.g., 1000001 ≈ 1000000
  - Similarly,  $3n^2 \approx n^2$
- Focus on asymptotic behavior: How does the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

#### Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
  - Data movement (assignment)
  - Control statements (branch, function call, return)
  - Arithmetic and logical operations
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

#### Running Time Complexity

Start by counting the primitive operations

```
/* N is the length of the array*/
int sumArray(int arr[], int N)
{
    int result=0;
    for(int i=0; i < N; i++)
        result+=arr[i];
    return result;</pre>
```

Ie

#### Let's look at what happens as we increase N

| Ν       | Steps = 3+ 5*N | / |
|---------|----------------|---|
| 1       | 8              | j |
| 10      | 53             |   |
| 1000    | 5003           |   |
| 100000  | 500003         |   |
| 1000000 | 5000003        |   |
|         |                | ٦ |

/\* N is the length of the array int sumArray(int arr[], int N) { int result=0; for(int i=0; i < N; i++) result+=arr[i]; return result;

- Does the constant 3 matter as N gets large?
- Does the constant 5 matter as N gets large?
- Maybe, but its something that is easily affected by the implementation, so we will ignore it
- Which of these may be affected by implementation details? Both

#### Asymptotic analysis

**Recall our goals:** 

- Focus on the impact of the algorithm
- Focus on asymptotic behavior

Here is how for the sumArray function:

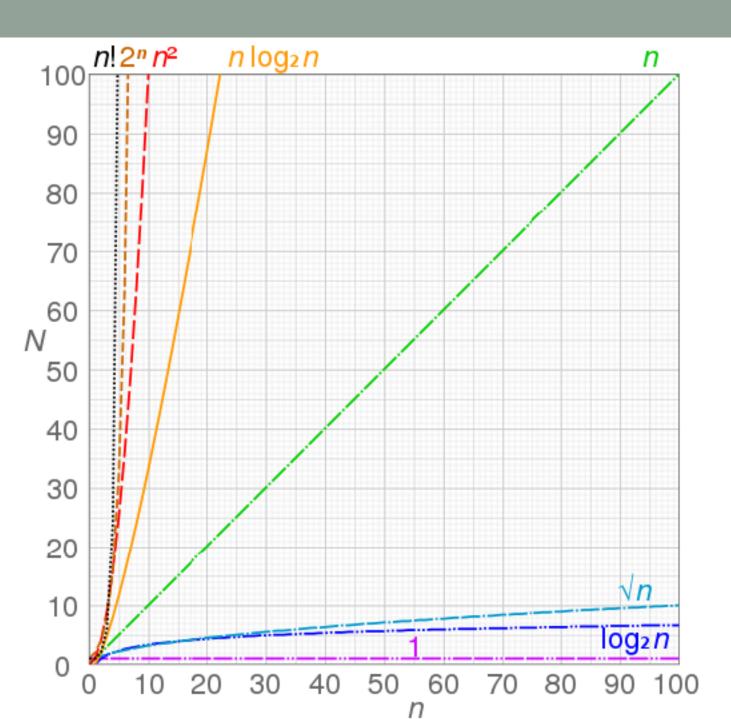
Exact step count : 3+ 5\*N Drop the constant additive term : 5\*N Drop the constant multiplicative term : N **Running time grows linearly with the input size** Express the count using **O-notation Time complexity =** O(N) (make sure you know what = means in this case) Which of the following is the step count for this algorithm as a function of input size (pick the closest)

- A. 3+ 5\*N
- B. 3+ 5\*N^2
- C. 3+5\*N/2
- D. 2\* log(N)
- E. Depends on the values in the array

/\* N is the length of the array\*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i=i+2)
 result+=arr[i];
 return result;</pre>

# Orders of growth

- We are interested in how algorithms scale with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20N hours v. N<sup>2</sup> microseconds:
  - which has a higher order of growth?
  - Which one is better?



# Writing Big O

- Simple Rule: Ignore lower order terms and constant factors: • 50n log n

  - 7n 3
  - $-8n^2 \log n + 5 n^2 + n + 1000$
- Note: even though 50 n log n is  $O(n^5)$ , it is expected that such approximation be as tight as possible (*tight upper bound*).

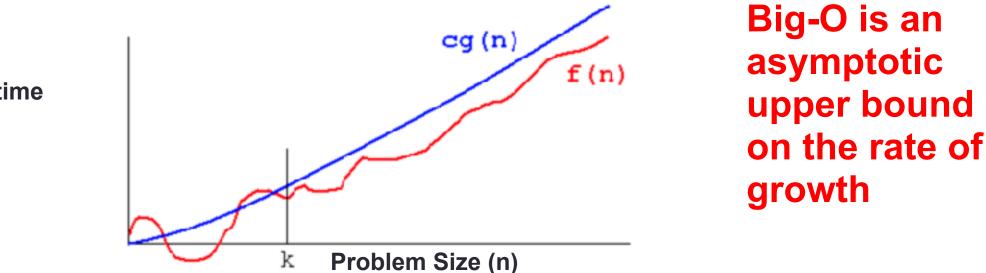
Given the step counts for different algorithms, express the running time complexity using Big Oh

- 1. 1000000
- 2.3**\***N
- 3.6**\***N-2
- 4.15\*N + 44
- 5. **N**<sup>2</sup>
- 6.  $N^2 6N + 9$
- 7.  $3N^2 + 4 \times \log(N) + 1000 \times N$

For polynomials, use only leading term, ignore coefficients: linear, quadratic

# Definition of Big O

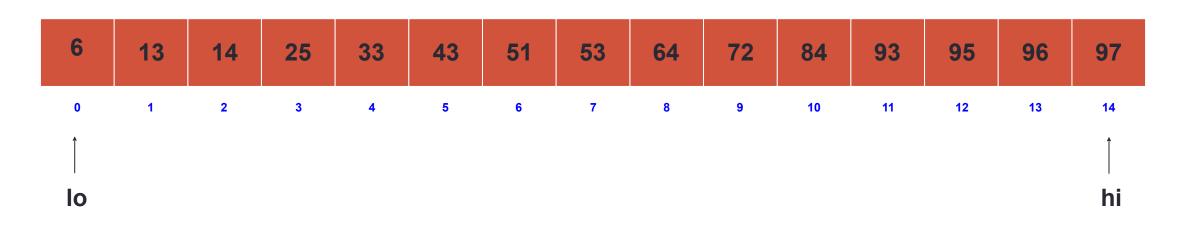
- Definition: A theoretical measure of the execution of an <u>algorithm</u>, usually the time or memory needed, given the problem size n. Informally, saying some equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). The notation is read, "f of n is big oh of g of n".
- Formal Definition: f(n) = O(g(n)) means there are positive constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for the function f and must not depend on n.



**Running time** 

# Operations on sorted arrays

- Min :
- Max:
- Median:
- Successor ( next largest element):
- Predecessor:
- Search:
- Insert :
- Delete:



#### What is the Big O of the iterative implementation?

- A. O(1)
- B. O(N)
- C. O(N<sup>2</sup>)
- D. O(2<sup>N</sup>)
- E. None of the above

function F(n) {
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

#### What is the Big O of the recursive implementation?

T(n): Time taken to calculate F(n)Assume unit timeT(n) is the step count for input n

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

T(1) = 2T(2) = 2

For n > 2: T(n) = 2 + 2 (1 for each subtraction)+ 1(addition) + T(n-1) + T(n-2) = T(n-1) + T(n-2) + 5

### What is the Big O of the recursive implementation?

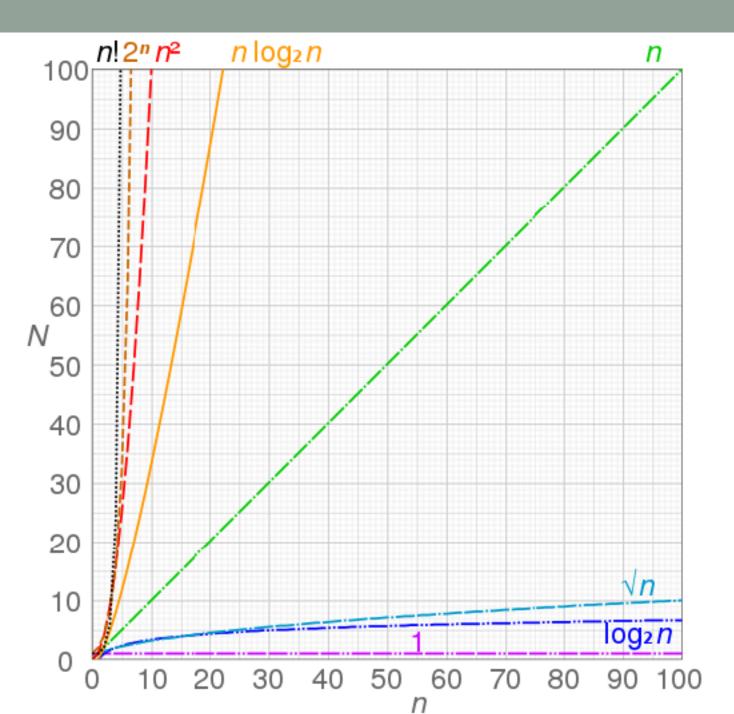
```
For n > 2:
T(n) = T(n-1) + T(n-2) + 5
Approximation: T(n-1) = T(n-2), actually T(n-1)>T(n-2).
So the following is an upper bound for T(n)
Upper bound for T(n) =
= 2^{T}(n-1) + C
= 2^{*} (2^{*} T(n-2) + C) + C
= 4^{*} T(n-2) + 3C
= 8* T(n-3) + 7C
= 2^{k*}T(n-k) + (2^{k}-1)^{*}C
For what value of k is n-k = 1, k = n-1. Substitute above
= 2^{n-1}T(1) + (2^{n-1}-1)C, T(1) = 2
```

#### What is the Big O of the recursive implementation

• We calculated the upper bound on the number of steps as a function of input size as:

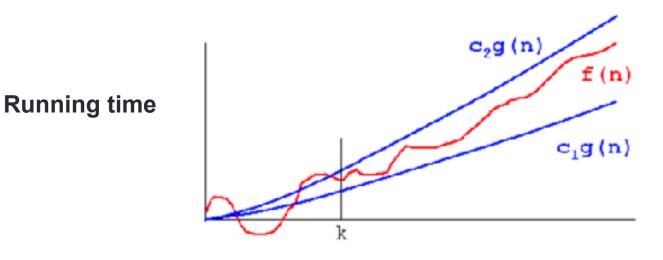
# Orders of growth

 How does exponential growth compare with linear?



# Big Omega, Big Theta

- Formal Definition: f(n) = Ω (g(n)) means there are positive constants c and k, such that 0 ≤ cg(n) ≤ f(n) for all n ≥ k. The values of c and k must be fixed for the function f and must not depend on n.
- Formal Definition:  $f(n) = \Theta(g(n))$  means there are positive constants  $c_1$ ,  $c_2$ , and k, such that  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  for all  $n \ge k$ . The values of  $c_1$ ,  $c_2$ , and k must be fixed for the function f and must not depend on n.



Big-Omega is a lower bound on the rate of growth

Problem Size (n)

#### Next time

Binary Search Trees

Ack: Prof. Sanjoy Das Gupta for his excellent motivation on why this lecture matters, taking the Fibonacci examples