
 
RECURSION

Problem Solving with Computers-II 6

10

40

12

32 4743

45 41

	

Let recursion draw you in….

• Many problems in Computer Science have a recursive structure…
• Identify the “recursive structure” in these pictures by describing them

Recursion as a tool for solving problems

Describe the problem in terms of a smaller version of itself!

To wash the dishes in the sink:

Wash the dish on top of the stack

If there are no more dishes

you are done!

 Else:

 Wash the remaining dishes in the sink

Compute the factorial of a number

n! = n* (n-1)* (n-2)* ….*1, if n>=1

 = 1 , if n=0

Examples in this course
Ask questions about data structures that have a recursive

structure like linked lists and trees:

• Find the sum of all the elements in this tree

• Print all the elements in the tree

• Count the number of elements in this tree

6

10

40

12

32 4743

45 41

50 20 4010

head

Recursive description of a linked list

50 20 4010

head

• A non-recursive description of the linked list:
 A linked list is a chain of nodes

• A recursive description of a linked-list:
 A linked list is a node, followed by a smaller linked list

Sum the elements in a linked list
50 20 4010

Sum of the elements in the linked list:
 If the linked list is empty,
 return 0
 else
 return Value of the first node +
 Sum the elements in the rest of the list

head

Search for an element in a linked list

Search for an input value in the linked list:

 If the value of the first node == input value
 return true
else
 Search in the rest of the list

50 20 4010head

The base case

int IntList::search(Node* h, int value){
 // Solve the smallest version of the problem
 // BASE CASE!!

 if(!h) return false;

}

4050 2010

h

int IntList::search(Node* h, int value){

 // BASE CASE!!
 if(!h) return false;
 if (h->value == value)
 return true;
 // RECURSIVE CASE:
return search(h->next, value);

}

4050 2010

head

int IntList::search(Node* h, int value){

 // BASE CASE!!
 if(!h) return false;
 if (h->value == value)
 return true;

 // RECURSIVE CASE:
search(h->next, value);

}

What is the output of
cout<<search(head, 50);

A.Segmentation fault

B.Program runs forever

C.Prints true or 1 to screen

D.Prints nothing to screen

E.None of the above

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example
bool IntList::search(int value){

return search(head, value);
 //helper function that performs the recursion.

}

Recursive deconstructors

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the deconstructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Recursive deconstructors

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the deconstructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

How is PA02 going?
A. Done
B. Completed designing my classes but haven’t implemented them yet
C. I understand how to approach the PA, haven’t designed by classes yet
D. I don’t quite understand how to approach the assignment
E. Haven’t read it yet

PA02

Next time
• More on Running time analysis

