
 
RECURSION

Problem Solving with Computers-II 6

10

40

12

32 4743

45 41

	

Let recursion draw you in….

• Many problems in Computer Science have a recursive structure…
• Identify the “recursive structure” in these pictures by describing them

Recursion as a tool for solving problems

Describe the problem in terms of a smaller version of itself!

To wash the dishes in the sink:

Wash the dish on top of the stack

If there are no more dishes

you are done!

 Else:

 Wash the remaining dishes in the sink

Compute the factorial of a number

n! = n* (n-1)* (n-2)* ….*1, if n>=1

 = 1 , if n=0

Examples in this course
Ask questions about data structures that have a recursive

structure like linked lists and trees:

• Find the sum of all the elements in this tree

• Print all the elements in the tree

• Count the number of elements in this tree

6

10

40

12

32 4743

45 41

50 20 4010

head

Recursive description of a linked list

50 20 4010

head

• A non-recursive description of the linked list:
 A linked list is a chain of nodes

• A recursive description of a linked-list:
 A linked list is a node, followed by a smaller linked list

Sum the elements in a linked list
50 20 4010

Sum of the elements in the linked list:
 If the linked list is empty,
 return 0
 else
 return Value of the first node +
 Sum the elements in the rest of the list

head

Search for an element in a linked list

Search for an input value in the linked list:

 If the value of the first node == input value
 return true
else
 Search in the rest of the list

50 20 4010head

The base case

int IntList::search(Node* h, int value){
 // Solve the smallest version of the problem
 // BASE CASE!!

 if(!h) return false;

}

4050 2010

h

int IntList::search(Node* h, int value){

 // BASE CASE!!
 if(!h) return false;
 if (h->value == value)
 return true;
 // RECURSIVE CASE:
return search(h->next, value);

}

4050 2010

head

int IntList::search(Node* h, int value){

 // BASE CASE!!
 if(!h) return false;
 if (h->value == value)
 return true;

 // RECURSIVE CASE:
search(h->next, value);

}

What is the output of
cout<<search(head, 50);

A.Segmentation fault

B.Program runs forever

C.Prints true or 1 to screen

D.Prints nothing to screen

E.None of the above

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example
bool IntList::search(int value){

return search(head, value);
 //helper function that performs the recursion.

}

Recursive deconstructors

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the deconstructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Recursive deconstructors

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the deconstructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

How is PA02 going? Note: checkpoint deadline 05/03
A. Done
B. Completed designing my classes but haven’t implemented them yet
C. I understand how to approach the PA, haven’t designed by classes yet
D. I don’t quite understand how to approach the assignment
E. Haven’t read it yet

PA02

Performance questions
19

• How efficient is a particular algorithm?
• CPU time usage (Running time complexity)
• Memory usage
• Disk usage
• Network usage

• Why does this matter?

• Computers are getting faster, so is this really important?
• Data sets are getting larger – does this impact running times?

How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

• Pros? Cons?

clock_t t;
t = clock();

//Code being timed

t = clock() - t;

Which implementation is significantly faster?
function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

A. Recursive algorithm

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

B. Iterative algorithm

C. Both are almost equally fast

A better question: How does the running time scale as a function of
input size

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

The “right” question is: How does the running time scale?
E.g. How long does it take to compute F(200)?
….let’s say on….

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation
The Earth simulator needs 295 seconds for F200.

Time in seconds Interpretation
 210 17 minutes

 220 12 days

 230 32 years

 240 cave paintings

 270 The big bang!

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

Let’s try calculating F200
using the iterative
algorithm on my laptop…..

Next time
• More on Running time analysis

