
RULE OF THREE 
LINKED LISTS CONTD
Problem Solving with Computers-II

Read the syllabus.  Know what’s required.  Know how to get help.

CLICKERS OUT – FREQUENCY AB

 



Questions you must ask about any data structure:
2

• What operations does the data structure support? 
   A linked list supports the following operations: 

1. Insert (a value) 
2. Delete (a value) 
3. Search (for a value) 
4. Min 
5. Max 
6. Print all values 

• How do you implement the data structure? 
• How fast is each operation? 



Linked-list as an Abstract Data Type (ADT)
class IntList {
public:
    IntList();              // constructor
    ~IntList();             // destructor
    // other methods
private:
    // definition of Node structure 
    struct Node {
        int info;
        Node *next;
    };
    Node *head; // pointer to first node
}; 
 



Code related to linked list ADT:
https://ucsb-cs24-s18.github.io/lectures/lect07/



Memory Leaks
• Data created on the heap with new must be 

deleted using the keyword delete 
• Code has a memory leak if 

• Data on the heap is never deleted or  
• Pointer to the data is lost

void foo(){
   int*p = new int;
}

• Code that results in a leak

• Use valgrind to detect leaks

./valgrind —leak-check = full <name of executable>



RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly 
define all three: 
1. Copy constructor 
2. Copy assignment 
3. De-constructor

1. What is the behavior of default copy-constructor, copy-assignment and 
deconstructor (taking linked lists as example)? 
2. When and why do we need to overload these methods?  
3. What is the desired behavior of the overloaded methods for linked-lists?



De-constructor: Default behavior

void foo(){
   IntList ll; 
   ll.insert(100);
   1l.insert(50);

 ll.insert(75);

}

class IntList{
public:

IntList(){head = tail = nullptr;}
void insert(int value);

private:
     //Definition of struct Node 
     //not shown here

Node* head;
Node* tail;

};

Does the above code result in a memory leak? 
A. Yes 
B. No



De-constructor: Default behavior
void foo(){
   IntList ll; 
   ll.insert(100);
   1l.insert(50);

 ll.insert(75);
}



Copy constructor: Default behavior

  100      50      75   

void foo(Intlist& list1){
   IntList list2(list1);

}

list1



Copy assignment

• The copy assignment should result in list1 having a copy of the data of list2  
• A class always has a default copy assignment which may be overloaded 
• Why overload the copy assignment?

IntList list1, list2;  //default constructors called

list1 = list2; //Copy assignment is called



Copy assignment: Default behavior

list2 = list1;

100  50   75

list1

 8  10 90

list2

 80



Value semantics: Copy assignment and copy constructor

Value semantics means passing objects to functions by value. The 
methods invoked are: 
• Copy assignment 
• Copy constructor



Next time
• Run time analysis


