
RULE OF THREE 
LINKED LISTS CONTD
Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT – FREQUENCY AB

Questions you must ask about any data structure:
2

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values

• How do you implement the data structure?
• How fast is each operation?

Linked-list as an Abstract Data Type (ADT)
class IntList {
public:
 IntList(); // constructor
 ~IntList(); // destructor
 // other methods
private:
 // definition of Node structure
 struct Node {
 int info;
 Node *next;
 };
 Node *head; // pointer to first node
};

Code related to linked list ADT:
https://ucsb-cs24-s18.github.io/lectures/lect07/

Memory Leaks
• Data created on the heap with new must be

deleted using the keyword delete
• Code has a memory leak if

• Data on the heap is never deleted or
• Pointer to the data is lost

void foo(){
 int*p = new int;
}

• Code that results in a leak

• Use valgrind to detect leaks

./valgrind —leak-check = full <name of executable>

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Copy constructor
2. Copy assignment
3. De-constructor

1. What is the behavior of default copy-constructor, copy-assignment and
deconstructor (taking linked lists as example)?
2. When and why do we need to overload these methods?
3. What is the desired behavior of the overloaded methods for linked-lists?

De-constructor: Default behavior

void foo(){
 IntList ll;
 ll.insert(100);
 1l.insert(50);

 ll.insert(75);

}

class IntList{
public:

IntList(){head = tail = nullptr;}
void insert(int value);

private:
 //Definition of struct Node
 //not shown here

Node* head;
Node* tail;

};

Does the above code result in a memory leak?
A. Yes
B. No

De-constructor: Default behavior
void foo(){
 IntList ll;
 ll.insert(100);
 1l.insert(50);

 ll.insert(75);
}

Copy constructor: Default behavior

 100 50 75

void foo(Intlist& list1){
 IntList list2(list1);

}

list1

Copy assignment

• The copy assignment should result in list1 having a copy of the data of list2
• A class always has a default copy assignment which may be overloaded
• Why overload the copy assignment?

IntList list1, list2; //default constructors called

list1 = list2; //Copy assignment is called

Copy assignment: Default behavior

list2 = list1;

100 50 75

list1

 8 10 90

list2

 80

Value semantics: Copy assignment and copy constructor

Value semantics means passing objects to functions by value. The
methods invoked are:
• Copy assignment
• Copy constructor

 
RECURSION

Problem Solving with Computers-I 6

10

40

12

32 4743

45 41

Let recursion draw you in….

• Many problems in Computer Science have a recursive structure…
• Identify the “recursive structure” in these pictures by describing them

Recursive description of a linked list

50 20 4010

head

• A non-recursive description of the linked list:
 A linked list is a chain of nodes

• A recursive description of a linked-list:
 A linked list is a node, followed by a smaller linked list

Sum all the elements in a linked list

50 20 4010

head

• A recursive description of a linked-list:
 A linked list is a node, followed by a smaller linked list

 Sum of all the elements in a linked list is:
Value of the first node +
Sum of the all the elements in the rest of the list

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example

int IntList::sum(){
 return sumHelper(head); //sumHelper is the helper
 //function that performs the recursion.

}

Let’s code it up

50 20 4010

head

int IntList::sumHelper(Node* h){

double result = h->value + sum(h->next);
 return result;

}

What happens when we execute this code on the
example linked list?
A. Returns the correct sum (120)
B. Program crashes with a segmentation fault
C. Program runs forever
D. None of the above

Going down the rabbit hole ….

4050 2010

head

int IntList::sumHelper(Node* h){
 // Solve the smallest version of the problem
 // THE BASE CASE!!

 if(!h) return 0;
 // Go deeper into the rabbit hole!!
 // THE RECURSIVE CASE:
double result = h->value + sumHelper(h->next);
// Come out of the rabbit hole

 return result;
}

Deleting the list

head tail

list

(A) (B)

(C) All nodes of the linked list
(D) B and C
(E) All of the above

int deleteList(LinkedList * list){
delete list;

}
Which data objects are deleted when the above function is called on the linked list
shown below:

Does this result in a memory leak?

Next time
• Run time analysis

