
 
REVIEW POINTERS, DYNAMIC MEMORY 
LINKED LISTS

Problem Solving with Computers-II

Have you implemented a linked-list before?
A. Yes
B. No

Representing a node in code

Linked Lists
3

Linked List

Array List 1 2 3

What is the key difference between these?

Review: pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

4

int *p, x = 10;
p = &x;
*p = *p + 1;

A.
 10x

B.
x

C. Neither, the code is incorrect

 11

p p

• Pointer: A variable that contains the address of another variable

• Declaration: type * pointer_name;

5

int *p; // p stores the address of an int

How do we initialize a pointer?

Pointers

What is outcome of the following code?
cout<<*p;
A. Random number
B. Undefined behavior
C. Null value

Review: Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

6

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1 p2 p2 p1

Review: Pointers to structs

Q: Which of the following pointer diagrams best represents the outcome of the above code?

7

Node x = {10, nullptr};
Node *p = &x;
p->data = p->data +1;
P = p->next;

A. B.
x

C. Neither, the code is incorrect

 0

p p

struct Node {
 int data;
 Node *next;  
};

 11 0 11 0

Dynamic memory allocation
• To allocate memory on the heap use the ‘new’

operator
• To free the memory use delete

8

int* createInt(){
int x = 10;
return &x;
}

int* createIntOnHeap(){

}

int *p= new int;
delete p;

Dynamic memory allocation
• To allocate memory on the heap use the ‘new’ operator
• To free the memory use delete

9

Node* createNode(){
Node x = {10, nullptr};
return &x;
}

Node* createNodeOnHeap(){

}

int *p= new int;
delete p;

Create a two node list
10

• Define an empty list
• Add a node to the list with data = 10

struct Node {
 int data;
 Node *next;  
};

Accessing elements of a list

 Assume the linked list has already been created, what do the following
expressions evaluate to?
1. head->data
2. head->next->data
3. head->next->next->data
4. head->next->next->next->data

A. 1
B. 2
C. 3
D. NULL
E. Run time error

head

struct Node {
 int data;
 Node *next;  
};

Iterating through the list

void printElements(Node* head) {
 /* Print the values in the list */

}

head

Clear the list

Node* clearList(Node* head) {
 /* Free all the memory that was created on the heap*/

}

list

Questions you must ask about any data structure:
14

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values

• How do you implement the data structure?
• How fast is each operation?

Linked-list as an Abstract Data Type (ADT)
class IntList {
public:
 IntList(); // constructor
 ~IntList(); // destructor
 // other methods
private:
 // definition of Node structure
 struct Node {
 int info;
 Node *next;
 };
 Node *head; // pointer to first node
};

Next time
• More linked list with classes

