REVIEW POINTERS, DYNAMIC MEMORY
LINKED LISTS

Problem Solving with Computers-I C++
e GitHub

N op B
L

LSV id L
ooV! o H
s

Have you implemented a linked-list before”?

A. Yes
B. No

Linked Lists Array List

The Drawing Of List {1, 2, 3}

Stack Heap

head | , The overall list is built by connecting the
nodes together by their next pointers. The

nodes are all allocated in the heap. Linked List

C/;- CcD—=CD

A “head” pointer local to Each node Each node stores The next field of
BuildOneTwoThree() keeps stores one one next pointer. the last node is
the whole list by storing a data element NULL.

pointer to the first node. (int in this

example). What is the key difference between these?

Review: pointers

int *p, x = 10;
P = &Xj;
*P=*p + 1;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

« |10 ox (1

S J

P

C. Neither, the code is incorrect

Pointers

- Pointer: A variable that contains the address of another variable
- Declaration: f#ype * pointer name;

int *p; // p stores the address of an int

What is outcome of the following code?

cout<<*p;

A. Random number

B. Undefined behavior
C. Null value

How do we initialize a pointer?

Review: Pointer assignment

int *pl, *p2, X;
pl = &x;
p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.

X
p2—»pl /- p2

C. Neither, the code is incorrect

Review: Pointers to structs

Node x = {10, nullptr}; struct Node {
Node *P = &X; int data;
p->data = p->data +1; Node *next;
P = p->next; }i

Q: Which of the following pointer diagrams best represents the outcome of the above code?
B.
o] <(ufo] [o
e P

C. Neither, the code is incorrect

A.

P

s
Dynamic memory allocation

* To allocate memory on the heap use the ‘new’ int *p= new int;
operator

delete p;
* To free the memory use delete

int* createInt(){ int* createIntOnHeap(){
int x = 10;
return &x;

}

e
Dynamic memory allocation

* To allocate memory on the heap use the ‘new’ operator int *p= new int;
- To free the memory use delete delete p;
Node* createNode(){ Node* createNodeOnHeap(){

Node x = {10, nullptr};
return &X;

}

N O
Create a two node list struct Node {

int data;

* Define an empty list
Pty Node *next;

- Add a node to the list with data = 10

Accessing elements of a list

struct Node {

(D

int data;
Node *next;

Y-

/)

Assume the linked list has already been created, what do the following
expressions evaluate to?

1.

2.
3.
4

nead->data

nead->next->data
nead->next->next->data
head->next->next->next->data

A. 1

B. 2

C.3

D. NULL

E. Run time error

head

terating through the list

T SNCB-apep
int lengthOfList(Node * head) {

/* Find the number of elements in the list */

s O
Deleting the list

Nodex freeLinkedList(Node * list) {
/* Free all the memory that was created on the heapx/

list

- s
Questions you must ask about any data structure:

 What operations does the data structure support?
A linked list supports the following operations:
1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max

e How do you implement the data structure?
e How fast is each operation?

B
Linked-list as an Abstract Data Type (ADT)

class IntList {

public:
IntList(); // constructor
~IntList(); // destructor
// other methods

private:

// definition of Node structure
struct Node {

int info;

Node *next;
i

Node *head; // pointer to first node

¥

Next time

- More linked list with classes

