
THE BIG FOUR,
OPERATOR OVERLOADING

Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT

Constructor and De-constructor

The most profound moments in the life
of an object are its birth and death.

 — Anonymous

Constructor and De-constructor
Every class has the following special methods
•Constructor:Invoked right AFTER new objects are
created in memory

•De-constructor: Invoked right BEFORE an object
is deleted from memory

The compiler automatically generates default
versions

Constructor
void foo(){
 Player p;
 Player *q = new Player;
 Player w(“Jill”);
}

How many times is the
constructor invoked for the
above code?
A. Never
B. Once
C. Twice
D. Thrice

Destructor: Invoked when an object is removed from memory
The de-constructor of which of the
objects is invoked when foo() returns
A.p
B.q
C. *q
D.None of the above

void foo(){
 Player p;

Player *q = new Player;
}

Copy constructor

• The copy constructor creates and initializes a new instance to be the copy of
another instance of the class

• A class always has a default copy constructor that COPIES the values of the input
object to the one that is being created

Player q1; //default constructor is invoked
Player p1(“Jill”); // Parametrized constructor
//Copy constructor is invoked in all cases below:
Player p2(p1);
Player p3 = p1;
Player *p = new Player(p1);

The point class (Chapter 2, section 2.4)

The point class (Chapter 2, section 2.4)

Overloading Binary Comparison Operators

double distance(const point & p1, const point &p2){
 if(p1 == p2)
 return 0;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

point p1, p2;
point p3 = p1 +p2

Overloading input/output stream
• Wouldn’t it be convenient if we could do this:
point p(10, 10);
cout<<p;

And this….

point p;
cin>>p; //sets the x and y member variables of p based on user input

Copy assignment

• Default behaviour: Member variables of p1 are copied to the members variables
are p2

Player q; //default constructor is invoked
Player p1(“Jill”); // Parametrized constructor
Player p2;
p2 = p1; // Copy assignment method is invoked

References in C++
int main() {
 int d = 5;
 int &e = d;
}

Which diagram below represents the result of the above code?

5d:
A. B.

C. D. This code causes an error

5e:

5d:
e:

5d:

e:

13

References in C++
int main() {
 int d = 5;
 int &e = d;
 int f = 10;
 e = f;

}

How does the diagram change with this code?

C. 10
d:
e:

10d:
e:

10f:

f:

A. B.
5d:

10e:

D. Other or error

f:

14

Passing parameters as references
int main() {
 int d = 5;
 foo(d);
 cout<<d;
}

What is the output of this
code?
A.5
B.10
C.Error
D.None of the above

15

void foo(int& e) {
 e = 10;
}

Tracing code involving pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

16

int *p, x = 10;
p = &x;
*p = *p + 1;

A.
 10x

B.
x

C. Neither, the code is incorrect

 11

p p

!Classes have member variables and member functions
(method). An object is a variable where the data type is a class.

!You should know how to declare a new class type, how to
implement its member functions, how to use the class type.

!Frequently, the member functions of an class type place
information in the member variables, or use information that's
already in the member variables.

!New functionality may be added using non-member functions,
friend functions, and operator overloading

 Summary

Next time
• Linked-lists (Chapter 5)

