
IMPLEMENTING C++ CLASSES
Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT – FREQUENCY AB

How is h01 (specifically the CS16 final) going?
2

A. Done - I think I have done well

B. Attempted - found it a bit difficult

C. Attempted - found some concepts alien

D. Attempted - extremely difficult

E. Haven’t attempted

Clickers out – frequency AB

Description of the thinking cap

• You may put a piece of paper in each of the two
slots (green and red), with a sentence written on
each.

• You may push the green button and the thinking
cap will speak the sentence from the green
slot’s paper.

• And same for the red button.

Thinking Cap Implementation

class thinking_cap
{
public:
 void slots(char new_green[], char new_red[]);
 void push_green();
 void push_red();
private:
 char green_string[50];
 char red_string[50];
};

• Usually we implement the class in a separate .cpp file.

Functi
on

 bod
ies

will
be i

n .cp
p fil

e.

Thinking Cap Implementation

void thinking_cap::slots(char new_green[], char new_red[])
{

}

There are two special features about a member
function’s implementation . . .

Thinking Cap Implementation

void thinking_cap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

There are two special features about a member function’s implementation . . .
1. The class name is included in the function’s heading using the :: operator
2. The function can refer to any of the member variables

Thinking Cap Implementation

Within the body of the function, the class’s member variables and
other methods may all be accessed.

void thinking_cap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

But, whose member
variables are
these? Are they
 c1.green_string
 c1.red_string
 c2.green_string
 c2.red_string ?

Thinking Cap Implementation

Within the body of the function, the class’s member variables
and other member functions may all be accessed.

void thinking_cap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

If we activate c1.slots():
 c1.green_string
 c1.red_string

Thinking Cap Implementation

Within the body of the function, the class’s member variables and
other member functions may all be accessed.

void thinking_cap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

If we activate c2.slots():
 c2.green_string
 c2.red_string

Thinking Cap Implementation

void thinking_cap::push_green()
{

 cout << green_string << endl;

}

Here is the implementation of the push_green() member
function, which prints the green message:

A Common Pattern
• Often, one or more member functions will place data in the
member variables...

class thinking_cap {
public:
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

slots push_green & push_red

Thinking Cap Definition
class thinking_cap
{
public:
 void slots(char new_green[], char new_red[]);
 void push_green();
 void push_red();
private:
 char green_string[50];
 char red_string[50];
};

When are the data members (green_string and red_string) created in memory
A. When the compiler compiles the class definition (above)
B. When an object of type thinking_cap is created in the program (at run-time)
C. When the slots() member function is activated

Constructor
An “initialization” function that is guaranteed to be called when an object
of the class is created

class thinking_cap
{
public:
 thinking_cap(char green[], char red[]);
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

Which distinction(s) do you
see between the constructor
and other methods of the
class?
A. The constructor has the

same name as the class
B. It doesn’t have a return

type
C. It has formal parameters
D. A and B
E. None of the above

Implementation of the constructor

thinking_cap::thinking_cap(char green[], char red[])
{
 //Code for initializing the member variables of

}

Do you expect the body of the constructor to be different from the slots() method in this
example? Discuss with your group why or why not.
A. Yes
B. No

Using the constructor

int main()
{
 thinking_cap c(“Hi”,”there”);
 c.push_green();
}

class thinking_cap
{
public:
 thinking_cap(char green[], char red[]);
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

What is the output of this code?

Using the constructor

int main()
{
 thinking_cap c;
 c.slots(“Hi”, “There”);
 c.push_green();
}

class thinking_cap
{
public:
 thinking_cap(char green[], char red[]);
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

What is the output of this code?

class thinking_cap
{
public:

thinking_cap(); //Default constructor
thinking_cap(char ng[], char nr[]); //Parameterized

 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
}

When are the data members (green_string and red_string) created in memory
A. When the compiler compiles the class definition (above)
B. When an object of type thinking_cap is created in the program (at run-time)
C. When the constructor explicitly creates these variables.

!Classes have member variables and member functions
(method). An object is a variable where the data type is a class.

!You should know how to declare a new class type, how to
implement its member functions, how to use the class type.

!Frequently, the member functions of an class type place
information in the member variables, or use information that's
already in the member variables.

!In the future we will see more features of OOP.

 Summary

Next time
• Operator overloading
• The Big four: constructor, de-constructor, copy-constructor, copy-assignment

