
PRIORITY QUEUES
DATA STRUCTURE SELECTION

Final exam
• About the final exam: https://ucsb-cs24-s18.github.io/exam/e03/
• Review session: Tomorrow (Tuesday- June 5)

• Phelps 2510
• Session one: 2p - 3p
• Session two: 3p -4p
• Both sessions will be identical

• Diba’s office hours and extra hours:
• Thursday : 11am to 1pm
• Friday: 3p to 5pm

https://ucsb-cs24-s18.github.io/exam/e03/

Goals of this class
• Object oriented programming
• Data structures

• Arrays
• Dynamic Arrays
• Linked lists (single and doubly linked)
• Stacks
• Queues
• Binary Search Trees
• Heaps (also known as priority queue)

• Be able to implement each of these data structures in C++
• Be able to use the C++ STL implementations of these data structures in your algorithms.
• Be able to select the right data structure for your problem by knowing:

• Operations supported by the data structure
• Big-O running time of these operations (not from memory but through analysis)

std::priority_queue (STL’s version of heap)

A C++ priority_queue is a generic container, and can store any data type
on which an ordering can be defined: for example ints, structs (Card),
pointers etc.

priority_queue<int> pq;

Methods:
* push() //insert
* pop() //delete max priority item
* top() //get max priority item
* empty() //returns true if the priority queue is empty

• You can extract object of highest priority in O(log N)
• To determine priority: objects in a priority queue must be comparable to each other

4

STL Heap implementation: Priority Queues in C++

By default, if a < b, b has higher priority than a

5

priority_queue<int> pq;
pq.push(10);
pq.push(2);
pq.push(80);
cout<<pq.top();
pq.pop();
cout<<pq.top();
pq.pop();
cout<<pq.top();
pq.pop();

A.10 2 80
B.2 10 80
C.80 10 2
D.80 2 10
E. None of the above

What is the output of this code?

http://pq.top
http://pq.top
http://pq.top

Comparison class

template <class T>
class less{

 bool operator()(T& a, T & b) const {
 return a<b;
 }
 };

The default std::less is a comparator class that provides priority comparisons

less<int> ls;
if(ls(a,b))
 cout<<a <<“has less priority over ”<< b;

6

• We call tell priority_queue how to prioritize items using a comparison class
• Comparison class: A class that implements a function call operator.

std::priority_queue template arguments
The template for priority_queue takes 3 arguments:

• The first is the type of the elements contained in the queue.

• If it is the only template argument used, the remaining 2 get their default values:
• a vector<T> is used as the internal store for the queue,
• less is a comparator class that provides priority comparisons

7

template <
 class T,
 class Container= vector<T>,
 class Compare = less <T>
 > class priority_queue;

Selecting data structures

8

Application: Sort an array of N integers

Data structure Comparison
9

Insert Search Min Max Delete min Delete max Delete (any)

Sorted array O(N) O(logN) O(1) O(1) O(N) if
ascending
order, else O(1)

O(1) if
ascending, else
O(N)

O(logN) to find,
O(N) to delete

Unsorted array O(1) O(N) O(N) O(N) O(N) O(N) O(N)

Sorted linked list (assume
access to both head and tail)

O(N) O(N) O(1) O(1) O(1) O(1) O(N) to find,
O(1) to delete

Unsorted linked list O(1) O(N) O(N) O(N) O(N) O(N) O(N) to find,
O(1) to delete

Stack O(1) - only
insert to top

Not supported Not supported Not
supported

Not supported Not supported O(1) - Only the
element on top of
the stack

Queue O(1) - only to
the rear of the
queue

Not supported Not supported Not
supported

Not supported Not supported O(1) - only the
element at the
front of the
queue

BST (unbalanced) O(N) O(N) O(N) O(N) O(N) O(N) O(N)

BST (balanced) O(logN) O(logN) O(logN) O(logN) O(logN) O(logN) O(logN)

Min Heap O(logN) Not supported O(1) Not
supported

O(logN) Not supported O(logN)

Max Heap O(logN) Not supported Not supported O(1) Not supported O(logN) O(logN)

