HEAPS

Announcements

- PA03 checkpoint due tomorrow (05/31) at midnight. Submit to pa03-checkpoint assignment on gradescope
- PA03 due next Friday 06/08 at midnight. Submit to the pa03 assignment on gradescope
- Final exam on Wed 06/13 (8a -11a)
- Review session on Tuesday (06/05): first session 2:00p to 3:00p and the other from 3:00p to 4:00p

How is PA03 going?

A. Done
B. On track to finish
C. Having trouble with the checkpoint (design)
D. Just started
E. Haven't started

Heaps: Supported Operations

- Insert :
- Min:
- Delete Min: $O(\log N)$
- Max
- Delete Max $O(\log N)$ $O(1)$

Max-Heap $O(\log N)$ BST (balanced) Min-Heaps

Choose heap if you are doing repeated insert/delete/(min OR max) operations

Applications:

- Efficient sort
- Finding the median of a sequence of numbers
- Compression cedes algorithms

Heaps as binary trees

- Rooted binary tree that is as complete as possible
- In a min-Heap, each node satisfies the following heap property:
key $(x)<=$ key(children of x)

$$
\begin{aligned}
& \text { root holds } \\
& \text { the min value. }
\end{aligned}
$$

Min Heap with 9 nodes

Where is the minimum element?

Heaps as binary trees

- Rooted binary tree that is as complete as possible
- In a max-Heap, each node satisfies the following heap property: key (x)>= key(children of x)
root holds
the max value
Max Heap with 9 nodes

Where is the maximum element?

Identifying heaps

Starting with the following min Heap which of the following operations will result in something that is NOT a min Heap
A. Swap the nodes 40 and 32
B. Swap the nodes 32 and 43
C. Swap the nodes 43 and 40 -
D. Insert 50 as the left child of 45
E. C\&D

Structure: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible. Nodes on the bottom level are as far left as possible

Insert into a heap

- Insert key(x) in the first open slot at the last level of tree (going from left to right)
- If the heap property is not violated - Done

Insert the elements $\{12,41,47,45,32\}$ in a min-Heap

Insert 32 into a heap

- Insert key (x) in the first open slot at the last level of tree (going from left to right)
- If the heap property is not violated - Done
- Else: while(key(parent(x))>key(x)) swap the key(x) with $\operatorname{key}(\operatorname{parent}(\mathrm{x}))$

Implementing heaps as arrays

How is the array implementation of the heap useful?

- More space efficient
- Accessing parent and children of a node is $O(1)$
- Easier to insert elements in the heap

Conceptualize heaps as trees, implement as arrays

For a node at index i, what is the index of the left and right children?
A. (2*i, 2*i+1)
B. $\left(2^{*} i+1,2^{*} i+2\right)$
C. $(\log (i), \log (i)+1)$
D. None of the above

Conceptualize heaps as trees, implement as arrays

Insert 50, then 35

For a node at index i, * index of the parent is:

$$
\mathrm{i} / 2-1, \quad \text { if } \mathrm{i} \text { is even }
$$ $(i-1) / 2, \quad$ if i is odd

* index of the children are (2i+1, 2i+2)

Insert 8 into a heap

Value	6	10	12	40	32	43	47	45	41	50	35
Index	0	1	2	3	4	5	6	7	8	9	10

Which node is the parent of 8 after the
insertion has been completed
Insert 8
A. Node 6
B. Node 12
C. None 43
D. None - Node 8 will be the root

For a node at index \mathbf{i},

* index of the parent is:
$i / 2-1, \quad$ if i is even
($\mathrm{i}-1$)/2, if i is odd
* index of the children are ($2 \mathbf{i}+1,2 i+2$)

Delete min

- Replace the root with the rightmost node at the last level
- "Bubble down"- swap node with one of the children until the heap property is restored

Delete min

- Delete the root:
- Replace the root with the last node in the array
- If heap property is violated - swap with the child that has the LOWEST key value, repeat until heap property is restored

To fix the heap property on a delete BUBBLE DOWN! Worst case: $O(\log N)$

Applications

- Efficient sort
- Finding the median of a sequence of numbers
- Compression codes

