
STACKS AND QUEUES
Problem Solving with Computers-II

Stacks – container class available in the C++ STL
• Container class that uses the Last In First Out (LIFO) principle
• Methods
i. push()
ii. pop()
iii. top()
iv. empty()

2

Demo reversing a string

Notations for evaluating expression
• Infix number operator number (7 + (3 * 5)) – (4 / 2)
• Prefix operators precede the operands
• Postfix operators come after the operands

3

Lab05 – part 1: Evaluate a fully parenthesized infix expression

4

((2 * 2) + (8 + 4))

5

((2 * 2) + (8 + 4))

6

What should be the next step
after the first right
parenthesis is encountered?
A. Push the right parenthesis

onto the stack
B. If the stack is not empty pop

the next item on the top of
the stack

C. Ignore the right parenthesis
and continue checking the
next character

D.None of the above

((2 * 2) + (8 + 4))

7

Evaluating a fully parenthesized infix expression

8

Evaluating a fully parenthesized infix expression

9

Evaluating a fully parenthesized infix expression

10

Evaluating a fully parenthesized infix expression

11

Lab 05, part2 :
Evaluating post fix expressions using a single stack
Postfix: 7 3 5 * + 4 2 / - Infix: (7 + (3 * 5)) – (4 / 2)

12

Small group exercise
Write a ADT called in minStack that provides the following methods
• push() // inserts an element to the “top” of the minStack
• pop() // removes the last element that was pushed on the stack
• top () // returns the last element that was pushed on the stack
• min() // returns the minimum value of the elements stored so far

13

The Queue Operations

• A queue is like a line of people waiting for a bank
teller. The queue has a front and a rear.

$ $

FrontRear

The Queue Operations

• New people must enter the queue at the rear. The C++ queue
class calls this a push, although it is usually called an
enqueue operation.

$ $

Front
Rear

The Queue Operations

• When an item is taken from the queue, it always comes
from the front. The C++ queue calls this a pop,
although it is usually called a dequeue operation.

$ $

Front
Rear

The Queue Class

• The C++ standard template
library has a queue template
class.

• The template parameter is the
type of the items that can be
put in the queue.

template <class Item>
class queue<Item>
{

public:

 queue();

 void push(const Item& entry);

 void pop();

 bool empty() const;

 Item front() const;

 …

Array Implementation

• A queue can be implemented with an array, as shown here.
For example, this queue contains the integers 4 (at the
front), 8 and 6 (at the rear).

[0] [1] [2] [3] [4] [5] . . .

An array of integers
to implement a
queue of integers

4 8 6

We don't care what's in
this part of the array.

Array Implementation

• The easiest implementation also keeps track
of the number of items in the queue and the
index of the first element (at the front of the
queue), the last element (at the rear).

[0] [1] [2] [3] [4] [5] . . .

4 8 6

size3

first0

last2

A Dequeue Operation

• When an element leaves the queue, size is
decremented, and first changes, too.

[0] [1] [2] [3] [4] [5] . . .

4 8 6

size2

first1

last2

An Enqueue Operation

• When an element enters the queue, size is
incremented, and last changes, too.

[0] [1] [2] [3] [4] [5] . . .

28 6

size3

first1

last3

At the End of the Array

• There is special behavior at the end of the
array. For example, suppose we want to add a
new element to this queue, where the last
index is [5]:

[0] [1] [2] [3] [4] [5]

2 16

size3

first3

last5

At the End of the Array

• The new element goes at the front of the
array (if that spot isn’t already used):

[0] [1] [2] [3] [4] [5]

2 16

size4

first3

last0

4

Array Implementation

• Easy to implement
• But it has a limited capacity with a fixed array
• Or you must use a dynamic array for an unbounded

capacity
• Special behavior is needed when the rear reaches the

end of the array.

[0] [1] [2] [3] [4] [5] . . .

4 8 6

size3

first0

last2

• Like stacks, queues have many applications.
• Items enter a queue at the rear and leave a queue at

the front.
• Queues can be implemented using an array or using a

linked list.

 Summary

