
 
BINARY SEARCH TREES

Problem Solving with Computers-II

Sorted arrays, Balanced Binary Search Trees

Operations Sorted Array Balanced BST
Min
Max
Successor
Predecessor
Search
Insert
Delete
Print elements in
order

Trees

3

 A tree has following general properties:
 • One node is distinguished as a root;
 • Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

4

Binary Search Tree – What is it?

42

32

12

45

41 50

5

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(const int & d) : data(d) {
 left = right = parent = 0;
 }
};

6

A node in a BST

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

BSTs allow efficient search!

42

32

12

45

41 50

8

• Start at the root; trace down a path
 by comparing k with the key of the current node x:

• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

9

Search
How many edges need to be
traversed to search for 40?
A. One
B. Two
C. Three
D. Four

42

32

12

45

41 50

How fast is the BST search algorithm?

10

Many different BSTs are possible for the same set of keys
Examples for keys: 12, 32, 41, 42, 45

How fast is BST search algorithm?

42

32

12

45

41

11

The complexity of search depends on the HEIGHT of the BST!

Height of a node: the height of a node is the number of edges on the longest path from
the node to a leaf
Height of a tree: the height of the root of the tree
Height of this tree is 2.

Worst case analysis
Are binary search trees really faster than linked lists for finding elements?
• A. Yes
• B. No

data:
next:

1 data:
next:

2 data:
next:

3

12

Balanced BSTs

42

32

12

45

41 50

13

14

Insert
• Insert 40
• Search for the key
• Insert at the spot you expected to find it

42

32

12

45

41 50

15

3

2 4

6

7

13

15

18

17 20

9

Maximum = 20

Max
Goal: find the maximum value in a BST
Following right child pointers from the root, until a
leaf node is encountered

Alg: int BST::max()

16

Predecessor: Next smallest element
42

32

23

45
20

50

• What is the predecessor of 32?
• What is the predecessor of 45?

17

Successor: Next largest element
42

32

23

45
20

50

• What is the successor of 45?
• What is the successor of 48?
• What is the successor of 60?

80

70

60

90

48

18

Delete: Case 1: Node is a leaf node
42

32

23

45
20

50

• Set parent’s appropriate child pointer to null
• Delete the node

80

70

60

90

48

19

Delete: Case 2 Node has only one child
42

32

23

45
20

50

• Replace the node by its only child

80

70

60

90

48

20

Delete: Case 3 Node has two children
42

32

23

45
20

50

• Can we still replace the node by one of its
children? Why or Why not?

80

70

60

90

48

Completely filled BSTs

21

Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……

How many nodes are on level L in a completely filled binary search tree?
A.2
B.L
C.2*L
D.2L

22

Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

And since we knew finding a node was O(H), we now know it is O(log2 N)

23

Sorted arrays, linked-lists, Balanced Binary Search Trees

Operations Sorted Array Balanced BST Linked list
Min
Max
Successor
Predecessor
Search
Insert
Delete
Print elements in
order

