BINARY SEARCH TREES

Problem Solving with Computers-I| c++

L
230857 oAl
nel"‘*e .ufﬂ“:.‘. 4
e

LI '.
gt AL cer ol
ooVt e
.y e
e~

L
Sorted arrays, Balanced Binary Search Trees

Operations Sorted Array Balanced BST
Min

Max

Successor
Predecessor
Search

Insert

Delete

Print elements In
order

A tree has following general properties:

* One node 1s distinguished as a root;

* Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;

A direction 1s: parent -> children

Which of the following is/are a tree?

A @

B.

D.A&B

E. All of A-C

- s
Binary Search Tree — What is it?

« Each node:
e « stores a key (k)
* has a pointer to left child, right child
@ e and parent (optional)

« Satisfies the Search Tree Property

Do the keys have to be integers?

5
Anode in a BST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
}s

Which of the following is/are a binary search tree?

¢

E. More than one of these

BSTs allow efficient search!

e - Start at the root; trace down a path
by comparing k with the key of the current node x:

Q @ - If the keys are equal: we have found the key

- If k <key[x] search 1n the left subtree of x

0 0 @ -+ If k > key[x] search in the right subtree of x

@ Search for 41, then search for 53
dise=<lb

Search

How many edges need to be
traversed to search for 407

A. One
B. Two
C. Three
D. Four

| R
How fast is the BST search algorithm®?

@ Many different BSTs are possible for the same set of keys
Examples for keys: 12, 32, 41, 42, 45

How fast is BST search algorithm®?

The complexity of search depends on the HEIGHT of the BST!

& o

Height of a node: the height of a node 1s the number of edges on the longest path from
the node to a leaf

Height of a tree: the height of the root of the tree

Height of this tree 1s 2.

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?
- A. Yes
- B. No

data:| 1 data:| 2 data:
next: »next: .next:lzl

As

Ak

Balanced BSTs

Insert

e *Insert 40
- Search for the key

a @ *Insert at the spot you expected to find it

.
Max

Goal: find the maximum value in a BST

Following right child pointers from the root, until a @
leaf node 1s encountered

Alg: int BST: :max () e @

() Q@ &

Maximum = 20

Predecessor: Next smallest element
e - What is the predecessor of 327?

- What is the predecessor of 457?

@ ©
OJNO
=)

Successor: Next largest element

- What is the successor of 457
e - What is the successor of 487

a - What is the successor of 607

®» ©
O
@)

Delete: Case 1: Node is a leaf node
e - Set parent’s appropriate child pointer to null

* Delete the node

55

@)

Delete: Case 2 Node has only one child

e - Replace the node by its only child

55

@)

Delete: Case 3 Node has two children
e - Can we still replace the node by one of its

children? Why or Why not?

55

@)

| B
Completely filled BSTs

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

How many nodes are on level L in a completély filled binary“search tree?
A.2

B.L

C.2"°L

D.2L

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

Finally, what is the height (exactly) of the tree in terms of N?

And since we knew finding a node was O(H), we now know it is O(log, N)

L
Sorted arrays, linked-lists, Balanced Binary Search Trees

Operations Sorted Array Balanced BST [Linked list
Min

Max

Successor
Predecessor
Search

Insert

Delete

Print elements In
order

